The solution of equation (27) can be found by separation of variables. The function

$$
\begin{equation*}
w_{h}(r, t)=R(r) T(t) \tag{28}
\end{equation*}
$$

is a solution, provided

$$
\begin{equation*}
v\left(R^{\prime \prime} T+\frac{1}{r} R^{\prime} T\right)-R T^{\prime}=0 \tag{29}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{T^{\prime}}{v^{\prime}}=\frac{1}{R}\left(R^{\prime \prime}+\frac{1}{r} R^{\prime}\right) \tag{30}
\end{equation*}
$$

Since the member on the left is a function of time alone and that on the right is a function of the radius alone, they must be equal to a constant, say $-\lambda^{2}$; hence we have the equations

$$
\begin{align*}
& r R^{\prime \prime}+R^{\prime}+\lambda^{2} r R=0 \tag{31}\\
& T^{\prime}+\lambda^{2} v T=0 \tag{32}
\end{align*}
$$

Equation (31) is Bessel's equation, and its general solution is written as

$$
\begin{equation*}
R(r)=A J_{0}(\lambda r)+B Y_{0}(\lambda r) \tag{33}
\end{equation*}
$$

where $J_{0}(\lambda r)$ and $Y_{0}(\lambda r)$ are Bessel functions of the first and second kind, respectively. G. N. Watson in reference (d) states that $Y_{0}(\lambda r)$ is infinite for interior problems, and consequently, $B=0$. Thus the solution of equation (31) becomes

$$
\begin{equation*}
R(r)=A J_{0}(\lambda r) \tag{34}
\end{equation*}
$$

The solution of equation (32), when v is a constant, is

$$
\begin{equation*}
T(t)=D e^{-\lambda^{2} \nu t} \tag{35}
\end{equation*}
$$

Then, upon substitution of (34) and (35) into (28), we immediately have

$$
\begin{equation*}
w_{h}(r, t)=c J_{0}(\lambda r) e^{-\lambda^{2} \nu t} \tag{36}
\end{equation*}
$$

A series of these solutions

$$
\begin{equation*}
w_{h}(r, t)=\sum_{j=1}^{\infty} c_{j} J_{0}\left(\lambda_{j} r\right) e^{-\lambda_{j}^{a} \nu t} \tag{37}
\end{equation*}
$$

represents a particular solution of the homogeneous equation (27).

A particular solution of equation (23) is

$$
\begin{equation*}
w_{p}(r, t)=-\frac{P_{g} \theta_{1}}{\rho L} e^{-t / \theta_{1}} \tag{38}
\end{equation*}
$$

The sum of equations (37) and (38) represents the solution of the governing equation of the fluid velocity within the bore of the knock-off tube. Thus

$$
\begin{equation*}
w(r, t)=\sum_{j=1}^{\infty} c_{j} J_{0}\left(\lambda_{j} r\right) e^{-\lambda_{j}^{2} \nu t}-\frac{P_{g} A_{1}}{\rho L} e^{-t / /_{1}} \tag{39}
\end{equation*}
$$

In order to find the solution of equation (23) that satisfies the boundary conditions, we are motivated to reconstruct (39) in the form

$$
\begin{equation*}
w(r, t)=\sum_{j=1}^{\infty} \frac{c_{j}}{A_{j}} J_{0}\left(\lambda_{j} r\right)\left[e^{-\lambda_{j}^{2} \nu t}-e^{-t / /_{1}}\right] \tag{40}
\end{equation*}
$$

